TTF Triples in Functor Categories

نویسندگان

  • Lidia Angeleri Hügel
  • Silvana Bazzoni
چکیده

We characterize the hereditary torsion pairs of finite type in the functor category of a ring R associated to tilting torsion pairs in the category of R-modules. Moreover, we determine a conditions under which they give rise to TTF triples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral triples of weighted groups

We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.

متن کامل

Classification of Split Ttf-triples in Module Categories

In our work [9], we complete Jans’ classification of TTF-triples [8] by giving a precise description of those two-sided ideals of a ring associated to one-sided split TTF-triples in the corresponding module category.

متن کامل

ar X iv : m at h / 05 11 15 9 v 1 [ m at h . R A ] 7 N ov 2 00 5 CLASSIFICATION OF SPLIT TORSION TORSIONFREE TRIPLES IN MODULE CATEGORIES

A TTF-triple (C, T , F) in an abelian category is one-sided split in case either (C, T) or (T , F) is a split torsion theory. In this paper we classify one-sided split TTF-triples in module categories, thus completing Jans' classification of two-sided split TTF-triples and answering a question that has remained open for almost forty years.

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Constructions of categories of setoids from proof-irrelevant families

When formalizing mathematics in constructive type theories, or more practically in proof assistants such as Coq or Agda, one is often using setoids (types with explicit equivalence relations). In this note we consider two categories of setoids with equality on objects and show, within intensional Martin-Löf type theory, that they are isomorphic. Both categories are constructed from a fixed proo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010